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SUMMARY: The reaction of alkoxycarbonylmethylentriphenylphosphonium ylides 1 

with alkyl propynoates 2 in dichlormethane proceeds via [2+2]cycloaddition 

rather than Michael addition, to lead to stabilised phosphonium ylides. 

In the course of our investigations into the reactivity of acetylen- 

dicarboxilic acid esters 2 with phospha-x 5 -azenes' 1 and the related iso- 

electronic phosphonium ylides 2z, we have obtained stabilised phosphonium 

ylides 5, whose structures are consistent with those derived of a cyclic 

intermediate of the Wittig type 2 , through a mechanism proposed for N-aryl 

phosph-x -azenes3 5 and triphenylphosphinalkylenes 
4. 

in aprotic solvents long 

ago (via 1). 

R3P=X-Ph 

1 X=N 

3 X=CH 

+ Me02C-CrC-C02Me-_, 
via 1 

Moreover, alkyl propynoate 6 and dimethyl acetylendicarboxylate (DMAD) 

show the same reactivity-type - cyclic intermediate-towardsN-aryl trisamino 

phospha-x 5 -azenes5andoften react similary in cyclisation reactions 6 as well 

as in Michael additions. 

The above mentioned results in the reaction of phosphonium ylides 2 and 

esters 2 prompted us to think that perhaps the acetylenic monoesters 6 could 

behave similary, that is [2+2] cycloaddition followed by ring opening (via 1) 
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However, in previous communications 
8 it was reported that ethoxycarbonyl- 

methylentriphenylphosphonium ylide 7a adds to ethyl propynoate 5 in dichlor- - 
methane to afford the cross-conjugated phosphonium ylide 8a (Ii'= R*= Et) in a - 
Michael addition fashion (via 2) 

Here we wish to report that the reaction of compounds 1 with alkyl propyn- 

oate 6 progresses through a cyclic intermediate (via 1) rather than a Michael 

addition (via 2). 

* +Ph3PzC02Rl 
1 

Ph3P=CH-C02R1 + HCZC-C02R2 = 

7 a:Rl=Et 2 a:R*=Et 

b:Rl=Me b:R*=Me 

2 
a :Rl= R*= Et 

b :Rl=Et, R*=Me 

. c :Rl=Me.R*=Et 
C02R1 

;2: R1= R2= Me 
Michael 

, Ph 

3 

pkco 

2 
8 via 2 

By the reported reaction' (via 2). the elected phosphonium ylide and 

ester can not distinguish between the two processes (via 1 or 2), since both 

afford the same product (R1= R*+z = 2). However, different labelling in the 

ester groups of both the phosphonium ylides ' 7 and the propyolates 6 could 

permit the study of the products 2 and/or 2 (i'# R*) through spectroscopic 

techniques. Such a study would reveal the product's structure and, hence, the 

mechanism. 

NMR data show conclusively that the reaction between 2 and 5 proceeds 

via [2+2] cycloaddition rather than via simple Michael addition to yield 

stabilised phosphonium ylides 2. Thus, ;;duct 2 ll(R1= Et, R*= Me), formed by 

reaction of 7a and 6b in dichlormethane , - - was characterised by NMR. Indeed, 

the 'HNMR spectrum of E showed the absorbtion for the methoxy and ethoxy group 

at 6= 3.49(0(X3) and 4.02(OCF12), 1.14(CH3) ppm respectively (see table) and the 

13CNMR showed the methoxy carbon at 6= 49.7 ppm as a wellresolved doublet (4Jpc 

= 1.6 Hz.), while the methylene carbon of the ethoxycarbonyl group appeared as 

a narrow singlet at 6= 58.2 ppm. Conversely, adduct 9c 13(R1= Me, R*= Et), 

obtained by treatment of 7b and 6a in dichlormethane i-2 , showed clearly different 

absorbtions. Thus, the 1- - 
HNMR presents the ethoxycarbonyl group with abnormally 

high-field shielding for the methyl group at 6 =0.86 ppm due to diamagnetic 

coupling of the P-phenyl groups 14 . In 13CNMR its methoxy carbon appears at 6 = 

49.9 ppm as a narrow singlet and its ethoxycarbonyl methylene signal at 6 = 58.5 

ppm as a we1 resolved doublet, with 4Jpc= 1.2 Hz. Likewise, 9a and 9d are also - - 
consistent with this result (see Table). 



383 

Table of selected NMR spectroscopic data. 

9a 

22 

9c - 

E 

22 
- 

'3C(DCC13/TMS)6(PPm) a,b 

SCH2cH3 OCH2 OCH3 cl0 c,50 

1.14 4.02 
0.85 3.95 

14.3 58.2 
14.6 58.3 

170.0d 168.3 

(l.2jd 
(1.5) (15.21e 

1.14 4.02 3.49 

3 

( 

! 0.86 3.94 3.55 

3.48 
3.56 

14.3 58.2 49.7 (l.6jd 

14*3 58.5d 170.3 167.7 
(1.2) 

49.9 
(l.5jd (14.4je 

49.6 
(1.6Jd 

169.gd 168.1 
(1.5) (14.9je 

49.9 

1.14 4.03 3.31 
3.35 

49.2 166.5 168.6 
14.2 59.3 (l.6Jd (15.6je 

51.5 

a.Varian FT80 and Briicker WP 80 SY spectrometer;b.Numbering 

ROdo-C'-?H=&-&OR ;c.Im DCC13 
._ 

Lh3 
usin! H3P04 

85% as internal 

d.4/pC/Hz.; e. Jpc /Hz. 

LH(DCC13/TMS)6(PPm)a 

)CH,W3 OCE2 OCg3 

'lP(DCC1 ) 

(ppmja' 
2 

24.4 

24.3 

24.3 

24.2 

18.0 

for 2 in 13C-NMR 

reference; 

Variable temperature 1 HNMR experiments comfirmed completely the assignment 

of 9b and SC. Thus, at 80 MHz. in hexadeuterioacetone, the methoxy singlet of - 
9b showed a broadening upon cooling which reached coalescence at 233K and - 
similary the ethoxy group of s also showed a coalescence at 233K showing 

that the methoxy'and ethoxy are involved by the restricted rotation of the 

ylides s and s respectively, and are adjacent to them. 

In the same way, when 7a was treated with DMAD in dichlormethane at room _ 

temperature, the stabilised phosphonium ylide g15 was obtained. This compound 

is similar to that described byphosphoranes 4 having hydrogen in the e position 

using aprotic solvents and whose formation was postulated by a cycloaddition 

(via 1). q02Me 

C02Me 

These results suggest that the phosphonium ylides obtained have structure 

2 and, therefore, that the reaction progresses preferably through cycloaddition 

In this context, It was recently reported 16 that phosphonium ylides having 

hydrogen in the Q position react with methyl 2-perfluoroalkynoates in dichlor- 

methane to produce acyclic precursors of polysubstituted benzenoids. 
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