Tetrahedron Letters, Vol.29, No.3, pp 381-384, 1988 Printed in Great Britain

MECHANISTIC ASPECTS OF THE REACTION OF SOME PHOSPHONIUM YLIDES WITH ALKYL PROPYNOATES.

Jose Barluenga*, Fernando Lopez, Francisco Palacios Departamento de Química Organometálica, Universidad de Oviedo 33071 Oviedo, Spain

Francisco Sánchez-Ferrando Department de Química, Unitat Química Orgánica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

SUMMARY: The reaction of alkoxycarbonylmethylentriphenylphosphonium ylides $\underline{7}$ with alkyl propynoates $\underline{6}$ in dichlormethane proceeds via [2+2]cycloaddition rather than Michael addition, to lead to stabilised phosphonium ylides.

In the course of our investigations into the reactivity of acetylendicarboxilic acid esters 3 with phospha- λ^5 -azenes¹ 1 and the related isoelectronic phosphonium ylides² 2, we have obtained stabilised phosphonium ylides 5, whose structures are consistent with those derived of a cyclic intermediate of the Wittig type 4, through a mechanism proposed for N-aryl phosph- λ^5 -azenes³ and triphenylphosphinalkylenes⁴ in aprotic solvents long ago (via 1).

$$\begin{array}{ccccccccc} R_3P = X - Ph & + & MeO_2C - C \neq C - CO_2Me \rightarrow \end{array} \xrightarrow[MeO_2C & CO_2Me] \xrightarrow{Ph} \\ 1 & X = N \\ 2 & X = CH & 3 & 4 & 5 \end{array} \xrightarrow[MeO_2C & CO_2Me] \xrightarrow{R_3P} & XPh \\ \hline MeO_2C & CO_2Me & MeO_2C & CO_2Me \\ \hline \end{array}$$

Moreover, alkyl propynoate <u>6</u> and dimethyl acetylendicarboxylate (DMAD) show the same reactivity-type - cyclic intermediate- towards N-aryl trisamino phospha- λ^5 -azenes⁵ and often react similary in cyclisation reactions⁶ as well as in Michael additions.

The above mentioned results in the reaction of phosphonium ylides 2 and esters 3 prompted us to think that perhaps the acetylenic monoesters 6 could behave similary, that is [2+2] cycloaddition followed by ring opening (via 1)

However, in previous communications⁸ it was reported that ethoxycarbonylmethylentriphenylphosphonium ylide <u>7a</u> adds to ethyl propynoate <u>6a</u> in dichlormethane to afford the cross-conjugated phosphonium ylide <u>8a</u> ($R^1 = R^2 = Et$) in a Michael addition fashion (via 2)

Here we wish to report that the reaction of compounds <u>7</u> with alkyl propynoate <u>6</u> progresses through a cyclic intermediate (via 1) rather than a Michael addition (via 2).

By the reported reaction⁸ (via 2), the elected phosphonium ylide and ester can not distinguish between the two processes (via 1 or 2), since both afford the same product $(R^1 = R^2 \rightarrow 8 = 9)$. However, different labelling in the ester groups of both the phosphonium ylides⁹ 7 and the propyolates 6 could permit the study of the products 8 and/or 9 $(R^1 \neq R^2)$ through spectroscopic techniques. Such a study would reveal the product's structure and, hence, the mechanism.

NMR data show conclusively that the reaction between 7 and 6 proceeds via [2+2] cycloaddition rather than via simple Michael addition to yield stabilised phosphonium ylides 9. Thus, adduct $9b^{11}(R^1 = Et, R^2 = Me)$, formed by reaction of $\underline{7a}$ and $\underline{6b}$ in dichlormethane¹², was characterised by NMR. Indeed, the ¹HNMR spectrum of <u>6b</u> showed the absorbtion for the methoxy and ethoxy group at $\delta = 3.49(OCH_3)$ and $4.02(OCH_2)$, $1.14(CH_3)$ ppm respectively (see table) and the ¹³CNMR showed the methoxy carbon at $\delta = 49.7$ ppm as a well resolved doublet (${}^{4}J_{pc}$ = 1.6 Hz.), while the methylene carbon of the ethoxycarbonyl group appeared as a narrow singlet at $\delta = 58.2$ ppm. Conversely, adduct $9c^{13}(R^1 = Me, R^2 = Et)$, obtained by treatment of $\frac{7b}{10}$ and 6a in dichlormethane $\frac{12}{12}$, showed clearly different absorbtions. Thus, the ¹HNMR presents the ethoxycarbonyl group with abnormally high-field shielding for the methyl group at s=0.86 ppm due to diamagnetic coupling of the P-phenyl groups¹⁴. In ¹³CNMR its methoxy carbon appears at $\delta =$ 49.9 ppm as a narrow singlet and its ethoxycarbonyl methylene signal at δ = 58.5 ppm as a wel resolved doublet, with ${}^{4}J_{PC}$ = 1.2 Hz. Likewise, <u>9a</u> and <u>9d</u> are also consistent with this result (see Table).

	¹ H(DCC1 ₃	/TMS)ð	(ppm) ^a	¹³ C(DCCl ₃ /TMS) ⁶ (ppm) ^{a,b}					³¹ P(DCC1 ₃)
-	OCH2CH3	ос <u>н</u> 2	ос <u>н</u> 3	осн ₂ сн ₃	о <u>с</u> н ₂	о <u>с</u> н _з	<u>c</u> 10	<u>č</u> 30	o (ppin)
<u>9a</u>	1.14 0.85	4.02 3.95		14.3 14.6	58.2 58.3 (1.2) ^d		170.0 (1.5) ^d	168.3 (15.2) ^e	24.4
<u>ap</u>	1.14	4.02	3.49	14.3	58.2	49.7 (1.6) ^d	169.8 (1.5) ^d	168.5 (15.6) ^e	24.3
<u>9c</u>	0.86	3.94	3.55	14.3	58.5 _d (1.2) ^d	49.9	170.3 (1.5) ^d	167.7 (14.4) ^e	24.3
<u>9d</u>			3.48 3.56			49.6 (1.6) ^d 49.9	169.9 _d (1.5) ^d	168.1 (14.9) ^e	24.2
<u>10</u>	1.14	4.03	3.31 3.35	14.2	59.3	49.2 (1.6) ^d 51.5	166.5	168.6 (15.6) ^e	18.0

Table of selected NMR spectroscopic data.

a.Varian FT80 and Brücker WP 80 SY spectrometer; b.Numbering for <u>9</u> in 13 C-NMR ROCD-C⁴-C⁴-CH=CH-COOR ;c.Im DCCl₃ using H₃PO₄ 85% as internal reference; $\overset{II}{PPh_3}$ d. ${}^{4}J_{PC}/Hz.$; e. ${}^{2}J_{PC}/Hz.$

Variable temperature ¹HNMR experiments comfirmed completely the assignment of <u>9b</u> and <u>9c</u>. Thus, at 80 MHz. in hexadeuterioacetone, the methoxy singlet of <u>9b</u> showed a broadening upon cooling which reached coalescence at 233K and similary the ethoxy group of <u>9c</u> also showed a coalescence at 233K showing that the methoxy and ethoxy are involved by the restricted rotation of the ylides <u>9b</u> and <u>9c</u> respectively, and are adjacent to them.

In the same way, when $\underline{7a}$ was treated with DMAD in dichlormethane at room temperature, the stabilised phosphonium ylide $\underline{10}^{15}$ was obtained. This compound is similar to that described by phosphoranes⁴ having hydrogen in the \mathfrak{a} position using aprotic solvents and whose formation was postulated by a cycloaddition (via 1). $\underline{C0_2}^{Me}$

These results suggest that the phosphonium ylides obtained have structure $\underline{9}$ and, therefore, that the reaction progresses preferably through cycloaddition In this context, it was recently reported¹⁶ that phosphonium ylides having hydrogen in the a position react with methyl 2-perfluoroalkynoates in dichlormethane to produce acyclic precursors of polysubstituted benzenoids.

REFERENCES

- 1. J. Barluenga, F. López, F. Palacios. J. Chem. Soc. Chem. Comumn. 1985, 1681
- 2. J. Barluenga, F. López, F. Palacios. J. Chem. Soc. Chem. Comumn. 1986, 1574
- G.W. Brown, R.C. Cookson, I.D.R. Stevens. Tetrahedron Lett. 1964, 1263
 G.W. Brown. J. Chem. Soc. (C) 1967, 2018.
- 4. H.J. Bestmann, O.Rothe. Angew. Chem. 1964, 76, 569
- 5. J. Bellan, M.R. Marre, M. Sánchez, R. Wolf. Phosphorus & Sulfur 1981, 12, 11.
- 6. K. Bast, M. Christl, R. Huisgen, W. Hack. Chem. Ber. 1973, 106, 3312.
- 7. H. Böhme, A. Ingendoh. Chem. Ber. 1979, 112, 1297.
- J.H. Labuschagne, D.F. Schneider. Tetrahedron Lett. 1982, 4135; ibid, 1983, 743.
- 9. Compounds 7a and 7b have similar basicity 10
- 10. K. Issleib, R. Lindner. Liebigs Ann. Chem 1967, 707, 120.
- 11. Spectral data for <u>9b</u>: δ_{H} (80MHz, DCCl₃) = 1.14 (t, 3H, OCH₂CH₃), 3.49 (s, 3H, OCH₃), 4.02 (q, 2H, OCH₂) 6.13 (dd, 1H, ³J_{HH} = 14.7 Hz., ⁴J_{PH} = 0,5 Hz., =CH), 7.04(dd, 1H, ³J_{HH} = 14.7Hz., ³J_{PH} = 17.3Hz., =CH), 7.48-7.85(m, 15H, ArH). δ_{C} (20MHz, DCCl₃) = 14.3(OCH₂CH₃), 49.7 (d, ⁴J_{PC} = 1.6 Hz., OCH₃), 58.0 (d, ¹J_{PC} = 121.9Hz., C₄), 58.2 (OCH₂), 101.5 (d, ³J_{PC} = 15.2 Hz., C₂), 122.6-133.6 (CAr), 144.7 (d, ²J_{PC} = 15.6 Hz., C₃), 168.5 (d, ²J_{PC} = 15.6 Hz., C₅), 169.8 (d, ⁴J_{PC} = 1.5 Hz., C₁) δ_{P} (32 MHz., DCCl₃) = 24.3 ppm.
- 12. Under the reaction conditions 10% of the $\underline{8b}$ isomer was obtained, this being 18% in the case of $\underline{8c}$ corresponding to $\underline{9c}$.
- 13. Spectral data for <u>9c</u>: $\delta_{H}(80 \text{ MHz., DCCl}_{3}) = 0.86 (t, 3H, OCH_2CH_3), 3.55 (s, 3H, OCH_3), 3.94 (q, 2H, OCH_3), 6.3 (dd, 1H, {}^3J_{HH} = 14.7 \text{ Hz., }^4J_{PH} = 0.5 \text{ Hz., =CH}), 7.05(dd, 1H, {}^3J_{HH} = 14.7 \text{ Hz., }^3J_{PH} = 17.3 \text{ Hz., =CH}), 7.45-7.8 (m, 15 H, ArH). <math>\delta_{C}(20 \text{ MHz, DCCl}_{3}) = 14.3 (OCH_2CH_3), 49.9 (OCH_3), 58.0 (d, {}^1J_{PC} = 119.7 \text{ Hz., }C_4), 58.5 (d, {}^4J_{PC} = 1.2 \text{ Hz., OCH}_2), 101.5 (d, {}^3J_{PC} = 14.8 \text{ Hz., }C_2), 123.7-134.4 (CAr), 146.0(d, {}^2J_{PC} = 15.0 \text{ Hz., }C_3), 167.7(d, {}^2J_{PC} = 14.4 \text{ Hz., }C_5), 170.74d, {}^4J_{PC} = 1.5 \text{ Hz., }C_1). \delta_{P}(32 \text{ MHz., DCCl}_3) = 24.3 \text{ ppm.}$
- 14. D. M. Crouse, A.T. Witman, E.F. Schweizer. J. Chem. Soc. Chem. Commun. 1968, 866.
- 15. Spectral data for <u>10</u>: $\delta_{H}(80 \text{ MHz}, \text{DCCl}_{3}) = 1.14(t, 3H, 0CH_{2}CH_{3}), 3.31(s, 3H, 0CH_{3}), 3.35(s, 3H, 0CH_{3}), 4.03(q, 2H, 0CH_{2}), 6.15(d, {}^{4}J_{PH}^{=} 0.6 \text{ Hz}, =CH), 7.15-7.95$ (m, 15H, ArH), $\delta_{c}(20 \text{ MHz}, \text{DCCl}_{3}) = 14.2(0CH_{2}CH_{3}), 47.4(d, {}^{1}J_{PC}^{=} 125.1 \text{ Hz}, C_{4}), 49.2(d, {}^{4}J_{PC}^{=} 1.5 \text{ Hz}, 0CH_{3}), 51.1(0CH_{3}), 59.3(0CH_{2}), 121.2(d, {}^{3}J_{PC}^{=} 10.1 \text{ Hz}, C_{2})$ 123.6-133.5(CAr), 142.6(d, {}^{2}J_{PC}^{=} 15.2 \text{ Hz}, C_{3}), 166.5 (C_{1}), 168.6(d, {}^{2}J_{PC}^{=} 15.6 \text{ Hz}, C_{5}), 170.6(d, {}^{3}J_{PC}^{=} 3.8 \text{ Hz}, C_{0}). \delta_{P}(32 \text{ MHz}, \text{DCCl}_{3}) = 18.0 \text{ ppm}.
- 16. W. Ding, P. Zhang, W. Cao. Tetrahedron Lett. 1987, 81.

(Received in UK 5 November 1987)